Acta Crystallographica Section E

Structure Reports
 Online

Poly[[cis-diaqua(2,2'-bipyridine)copper(II)]-μ-3-carboxylato-4-hydroxybenzenesulfonato]

Sai-Rong Fan, ${ }^{\text {a }}$ Long-Guan Zhu, ${ }^{\text {a }}$ * Hong-Ping Xiao ${ }^{\text {b }}$ and Seik Weng $\mathbf{N g}^{\text {c }}$

${ }^{\text {a }}$ Department of Chemistry, Zhejiang University, Hangzhou 310007, People's Republic of China, ${ }^{\mathbf{b}}$ School of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China, and ${ }^{\text {c }}$ Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.052$
$w R$ factor $=0.112$
Data-to-parameter ratio $=15.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

The title complex, $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{6} \mathrm{~S}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, consists of a polymeric neutral chain involving the 3-carboxylato-4hydroxybenzenesulfonate ligand. The Cu atom shows a distorted octahedral coordination geometry, defined by two N atoms of the bipyridine, two O atoms of water molecules and the carboxyl O atom as well as one sulfonyl O atom of a symmetry-related bridging ligand. H atoms of water molecules are involved in $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding, building a three dimensional network.

Comment

In a recent report on metal 3-carboxy-4-hydroxybenzenesufonates, the authors reacted copper(II) bis(3-carboxy-4hydroxybenzenesulfonate) (prepared in situ) with two molar equivalents of $2,2^{\prime}$-bipyridine and obtained the expected bischelated compound but, of the two monoanions, only one is coordinated to the Cu atom, which is only five-coordinate (Gao et al., 2005). Without an abstracting reagent, a similar synthesis yielded the monochelated compound, but the 3-carboxy-4-hydroxybenzenesulfonate behaves here as a dianion (Fig. 1).

In the title compound, (I), the doubly deprotonated 3-carboxylato-4-hydroxybenzenesulfonate group acts as a $\mu_{2^{-}}$ bridging ligand linking Cu atoms, forming a polymeric zigzag chain. The compound is isostructural with the cobalt(II) analog, whose structure has been described recently (Fan et al., 2005). H atoms of water molecules are involved in intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding, building a threedimensional network (Table 1 and Fig. 2). There are also intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the hydroxyl group and the carboxyl O atom coordinated to copper, and between one of the water molecules and the second carboxyl O atom (Table 1).

Received 25 January 2005 Accepted 4 February 2005 Online 12 February 2005

Figure 1
ORTEPIII (Burnett \& Johnson, 1996) plot of a fragment of the polymeric chain of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) $x-\frac{1}{2}$, $\frac{1}{2}-y, z-\frac{1}{2}$; (ii) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$.]

CAMERON (Watkin et al., 1993) view of the packing, showing the $\mathrm{O}-$ H...O hydrogen-bonded (dashed lines) three-dimensional network. H atoms not involved in hydrogen bonding have been omitted.

Experimental

A solution of copper acetate hydrate ($0.041 \mathrm{~g}, 0.2 \mathrm{mmol}$) and 5sulfosalicylic acid dihydrate $(0.103 \mathrm{~g}, 0.4 \mathrm{mmol})$ dissolved in water $(20 \mathrm{ml})$ was added to a methanol solution $(5 \mathrm{ml})$ of $2,2^{\prime}$-bipyridyl ($0.030 \mathrm{~g}, 0.2 \mathrm{mmol}$). The clear blue solution was left to stand for a day to allow the solvent to evaporate. Blue block-shaped crystals were
obtained. Analysis calculated for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{CuN}_{2} \mathrm{O}_{8} \mathrm{~S}$: C 43.26, H3.42, N 5.94%; found: C 42.63, H 3.47, N 5.96\%.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{6} \mathrm{~S}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=471.92$
Monoclinic, $P 2_{1 /} / n$
$a=14.2339$ (8) A
$b=7.7622$ (4) \AA
$c=17.801$ (1) \AA
$\beta=110.940$ (1) ${ }^{\circ}$
$V=1836.87(17) \AA^{3}$
$Z=4$
$D_{x}=1.707 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4713 reflections
$\theta=2.3-28.3^{\circ}$
$\mu=1.35 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, blue
$0.28 \times 0.26 \times 0.12 \mathrm{~mm}$

Data collection

Bruker SMART APEX areadetector diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{\text {min }}=0.703, T_{\text {max }}=0.854$
10938 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0379 P)^{2}\right.} \\
&+2.6968 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.63 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.40 \mathrm{e}^{-3}
\end{aligned}
$$

4143 independent reflections
3855 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-18 \rightarrow 18$
$k=-9 \rightarrow 10$
$l=-23 \rightarrow 14$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.112$
$S=1.20$
4143 reflections
275 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 2{ }^{\text {i }}$	0.821 (18)	1.870 (19)	2.688 (3)	174 (4)
$\mathrm{O} 1 W-\mathrm{H} 1 W 2 \cdots \mathrm{O} 2^{\text {ii }}$	0.83 (4)	1.89 (4)	2.717 (3)	178 (4)
$\mathrm{O} 2 W-\mathrm{H} 2 W 1 \cdots \mathrm{O} 3^{\mathrm{i}}$	0.848 (17)	2.001 (19)	2.810 (4)	159 (3)
$\mathrm{O} 2 W-\mathrm{H} 2 W 2 \cdots \mathrm{O} 4$	0.852 (18)	1.99 (2)	2.738 (4)	146 (3)
O6-H6 \cdots O 5	0.82	1.89	2.599 (3)	143

Symmetry codes: (i) $x-\frac{1}{2}, \frac{3}{2}-y, z-\frac{1}{2}$; (ii) $1-x, 1-y, 2-z$.
Aromatic H atoms were positioned geometrically and were included in the refinement in the riding-model approximation [C$\mathrm{H}=0.93 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$. The water and hydroxy H atoms were located in a difference Fourier map and refined with distance restraints of $\mathrm{O}-\mathrm{H}=0.85(1) \AA$ and $\mathrm{H} \cdots \mathrm{H}=1.39(1) \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: SHELXL97.

We thank the National Natural Science Foundation of China (No. 50073019) and the University of Malaya for supporting this study.

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

metal-organic papers

Fan, S.-R., Zhu, L.-G., Xiao, H.-P. \& Ng, S. W. (2005). Acta Cryst. E61, m435m436.
Gao, S., Huo, L.-H., Zhao, H. \& Ng, S. W. (2005). Acta Cryst. E61, m290m292.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Watkin, D. M., Pearce, L. \& Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

